Latent Fingerprint SDK Test APl Specification 7 November 2007

Latent Fingerprint SDK Test (Phase Il)
API Specification

Introduction

1.1

The Latent Fingerprint SDK Test provides a meanslaiermining core search performance of
latent-fingerprint matchers. This document spesifall SDK interfaces and functionality as well
as the data formats used for this test.

There will be minimal human involvement during tetual execution of the test. A small amount
of human assistance will probably be required &ppre the data. All such assistance will be
provided indirectly by NIST, and may include:

a) Crop and orient certain latents.
b) Provide aregion-of-interest.
C) Provide latent experts for examining potentarsolidations.

Those wishing to submit software for Latent FingenpSDK testing shall be required to provide
NIST with an SDK (Software Development Kit) libramhich complies with the API (Application
Programmer Interface) specified in this document.

Fingerprint Image Data

Format

The SDK must be capable of processing fingerpmetges supplied to the SDK in uncompressed
raw 8-bit (one byte per pixel) grayscale formatheTmage data shall appear to be the result of a
scanning of a conventional inked impression ofrgdiprint. Figure 1 illustrates the recording
order for the scanned image. The origin is theeupeft corner of the image. The x-coordinate
(horizontal) position shall increase positivelyrfréhe origin to the right side of the image. They
coordinate (vertical) position shall increase pesly from the origin to the bottom of the image.

Scan Representation

Line k [Line1... Linek......... Line n

|

Figure 1 Order of scanned lines

Page 1 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

1.2

2.1

Raw 8-bit grayscale images are canonically encoddw minimum value that will be assigned to
a "black" pixel is zero. The maximum value thatl yie assigned to a "white" pixel is 255.
Intermediate gray levels will have assigned valoke%- 254. The pixels are stored left to right,
top to bottom, with one 8-bit byte per pixel. Thewber of bytes in an image is equal to its height
multiplied by its width as measured in pixels; #és no header. The image height and width in
pixels will be supplied to the SDK as supplemeirtidrmation.

Resolution, Dimensions and Orientation

The latent fingerprint images will employ either056r 1000 ppi resolution (both horizontal and
vertical). All background fingerprint images widmploy 500 ppi resolution (both horizontal and
vertical). The precise resolution for each indiatlimage will be specified to the SDK via the
API.

All fingerprint images used for the background widlry from 150 to 1000 pixels in both width
and height dimensions. All latent images at 50Dvgp vary from 150 to 1000 pixels in both

width and height. All latent images at 1000 ppil wary from 150 to 2000 pixels in both width
and height. The precise dimensions of each indalitmage will be specified to the SDK via the
API.

All latent fingerprint images used for Phase Ititegg may vary in orientation over the full angular
range (0 to 359). The estimated orientation amfyeaof uncertainty of individual latent prints

may be specified to the SDK via the API. Otherwibe orientation is specified as “upright” +-

180 degrees. No information will be specifiedite 8DK regarding the orientation of background
fingerprint images.

No information regarding the distribution of fingeint image resolution, dimensions, or
orientation within the Phase Il dataset is providethis document.

Test Interface Description

Participants shall submit an SDK which providesitiierfaces defined in section 2.3. Section 2.2
defines the interfaces to functions provided by Nf& use by the SDK. Sections 2.1 and 2.4
specify the declaration of constants, error coda&@-types and functions used by both.

Declarations

The following are declarations of data types amtfions used in the Latent Fingerprint SDK
testing interface:

Ml "
/I Declarations of constants I
T 1"

/I Impression type codes

#define IMPTYPE_LP 0 /I Live-scan plain
#define IMPTYPE_LR 1 /I Live-scan rolled
#define IMPTYPE_NP 2 /I Nonlive-scan plain
#define IMPTYPE_NR 3 /I Nonlive-scan rolled

/I Finger position codes

#define FINGPOS_UK 0 /I Unknown finger
#define FINGPOS_RT 1 /I Right thumb
#define FINGPOS_RI 2 /I Right index finger
#define FINGPOS_RM 3 /I Right middle finger
#define FINGPOS_RR 4 /I Right ring finger
#define FINGPOS_RL 5 /I Right little finger
#define FINGPOS LT 6 // Left thumb

Page 2 of 12

Latent Fingerprint SDK Test APl Specification

#define FINGPOS_LI 7 Il Left index finger
#define FINGPOS_ LM 8 /I Left middle finger
#define FINGPOS_LR 9 /I Leftring finger
#define FINGPOS _LL 10 /I Left little finger

T
/I Declarations for the NIST provided library funct
W T

/I Structure to hold a single fingerprint record (i
struct finger_record
{
BYTE impression_type;
UINT16 resolution;
BYTE finger_position;
UINT16 height;
UINT16 width;
BYTE *image_data;

/I Image resolution in pixels/c

/I Image height in pixels
/I Image width in pixels
// 8-bit grayscale image data

3
typedef struct finger_record FINGER_REC;

/I Extracts 10 fingerprint records from a ten-print (A
INT32 extract_image_data(const char *tenprint_filen
FINGER_REC **finger_recs);

/I De-allocates the memory holding 10 fingerprint r
void free_image_data(FINGER_REC *finger_recs);

W T
/I Declarations for the SDK provided library functi
T §n

/I Structure to hold zero or more candidates return
struct candidate {
UINT32 background_index;
BYTE finger_position;
DOUBLE similarity_score;
BYTE probability;
UINT16 num_matching_minutiae;
BYTE candidate_quality;

}
typedef struct candidate CANDIDATE;

/I Structure to hold list of candidates returned by
struct candidate_list

{
UINT32 num_entries;
UINT16 num_latent minutiae;
BYTE latent_quality;
CANDIDATE *list;

b

typedef struct candidate_list CANDIDATE_LIST;

/I Enrolls the entire set of background images

INT32 enroll_background(const INT32 num_recs,
const char **filenames, const char *enrollment_dir,
char *error_msg);

7 November 2007

i
ions 1
i

mage+metadata)

N2K) file
ame,

ecords

i
ons 1
i

ed in a search

SDK

Page 3 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

/I Selects the current background for latent ima ge searching
INT32 set_background(const char *enroliment_dir);

/I Enrolls the latent image

INT32 enroll_latent(const FINGER_REC *latent_finger ,
const BYTE *roi_mask, const UINT16 orientation,
const BYTE offset, BYTE *enrolled_latent,
INT32 *enroll_length);

/I Searches for the latent image in the background
INT32 image_search(const BYTE *enrolled_latent,
CANDIDATE_LIST *candidates, char *error_msg);

2.2 NIST Provided Functions

2.2.1 Extract Image Data

INT32
extract_image_data (const char *tenprint_filename,
FINGER_REC **finger_recs);

Description
This function extracts ten fingerprint image recofitom a single (AN2K formatted) ten-
print record file. The caller shall pagsprint_filename as a pointer to the fully
qualified pathname of an AN2K formatted ten-prie¢ard file, andinger_recs as the
address of a pointer of typdNGER_REC (see 2.1 above).

Upon returrfinger_recs will contain a pointer to an array of teiNGER_REC
structures ordered by finger position from 1 (rithimb) to 10 (left little finger). For
any fingers that are missing from the original prmt record file, themage data field in
the respectivEINGER_REQwill be a NULL pointer.

Example

/I Example of processing a ten-print record
FINGER_REC *finger_recs;
INT32 status=extract_image_data(‘image00205.an2k”, &finger_recs);
if (status == 0) {

for (i=0;i<10;i++) {

if (finger_recs[i].image_data != NULL)
process_valid_finger(finger_recs]i]);

else
process_missing_finger(finger_recsJi]);
}
free_image_data(finger_recs); // see 2.2.2 below
}
Parameters
tenprint_filename (input): A pointer to a ten-print record filename.

finger_recs (output): The address of EINGER_REC pointer.

Return Value

This function returngero on succeser a documentedon-zero error code otherwise.

Page 4 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

2.2.2 Free Image Data

void
free_image_data(FINGER_REC *finger_recs);

Description
De-allocates all memory used by the arraffiNGER _RECstructures specified by
finger_recs which was allocated during a callégtract_image_data().

Parameters
finger_recs (input): A pointer to an array dFINGER_REC structures.

Return Value

None.

2.3 SDK Provided Functions

2.3.1 Enroll Background

INT32
enroll_background(const INT32 num_recs,
const char **filenames,
const char *enrollment_dir,
char *error_msg);

Description

This function performs the conversion of all baeckgrd 10-print records into a
proprietary dataset. No format is prescribed fus tdata, but it could be a set of
proprietary templates. Pre-computation of backgdodata avoids reprocessing of the
original images upon subsequent callgriage_search()

The SDK shall use the functioextract image_ data() (see 2.2.1 above)
provided by NIST to extract the raw grayscale imagd metadata from each 10-print
record file specified in the filenames array. Note that each call to
extract_image_data() allocates memory to hold the extracted image and
metadata, so this memory should be de-allocatechgugshe NIST provided
free_image_data() (see 2.2.2 above) function when no longer needed.

The format of the filenames pointed to by flikenames array will be canonical Unix
style pathnames using forward slash directory s#pes (e.g. “/mntl/xyz/foo-
22/image00205.an2k”).

All data produced by the SDK shall be stored exchlg to the directory specified by
enroliment_dir. The contents of this directory are at the discretion of the
vendor.

Non-fatal error conditions shall be tolerated ahallsnotresult in pre-mature halting (i.e.
non-completion of background enroliment). Thesmreconditions include missing

fingers in 10-print records, and failure-to-enr@TE) any portion of a 10-print record.
If any of the above non-fatal error conditions areountered, the SDK may optionally
return a documented non-zero warning code (afterpbeting background enrollment),
though this is not required.

Upon entry theerror_msg parameter will point to a pre-allocated and preized string
buffer of length 513 bytes (512 + 1 for tNEJLL terminator) which the SDK may use for

Page 5 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

outputting detailed information regarding fatalaesr which have occurred (signaled by a
non-zero return code). This may be useful for dging any problems that might occur
after the SDK is received by NIST. For exampleh& enrollment process encounters a
fatal or non-fatal error during processing of acsfi@ background ten-print record file,
the SDK could output an error message including té@print record filename to
error_msg and return a documented non-zero error or warodntg respectively.

Note 1: The order of the ten-print record file nanes infilenames defines (implicitly)
the indexing scheme that shall be used henceforthrfrecording the ten-print record
indices of all candidates returned byi nage_sear ch() . The index of the first ten-
print record is 1.

Note 2: During subsequent calls ta mage_sear ch() the SDK is permitted to
access the original background images. To suppadthis access, the path information
supplied by filenames regarding the original background images should betored in
the proprietary background set inenrollment_dir.

Parameters
num_recs (input): The number of ten-print records to enroll.

filenames (input): Array of pointers to all ten-print record filenames
enrollment_dir (input): The directory used to store enroliment data output.
error_msg (output): Pointer to a detailed error message string.
Return Value
This function returngero on successr a documentedon-zero error code otherwise.
2.3.2 Set Background

INT32
set_background(const char *enrollment_dir);

Description

This function selects the background that shallused by all subsequent calls to
image_search() . The directory specified bynroliment_dir shall contain the
enrollment data produced by a prior caletwoll_background().

Parameters
enrollment_dir (input): The directory to be used lipmage_search()

Return Value

This function returngero on succeser a documentedon-zero error code otherwise.

2.3.3 Enroll Latent

INT32
enroll_latent(const FINGER_REC *latent_finger,
const BYTE *roi_mask,
const UINT16 orientation,
const BYTE offset,
BYTE *enrolled_latent,

Page 6 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

INT32 *enroll_length);

Description
This function enrolls the latent image pointed yddient_finger, and writes the
enrollment data to the memory location pointedbtolled_latent. The latent image
itself shall be in “raw” uncompressed 8-bit grayedarmat. No format is prescribed for
the enroliment data.

The fieldslatent_finger->width andlatent_finger->height specify the width and height
of the latent image in pixels. The fidiatent_finger->resolution specifies the horizontal
and vertical resolution of the latent image in fExger centimeter (e.g. 500 pixels per
inch is specified as 197 ppcm ; 1000 ppi is spedifis 394 ppcm). The fields
latent_finger->impression_type andlatent_finger->finger_position will always be set
equal to 0.

The function may be optionally supplied with a ‘i@gof interest” in the form of an
image mask. In cases where no “region of inter@éttmation is provided, the input
roi_mask parameter shall beNULL pointer. Otherwise,oi_mask shall point to a “raw”
uncompressed raw 8-bit grayscale image with theesdimensions as the latent
fingerprint image. The region (or regions) of het in the latent fingerprint image are
identified by the correspondingy locations in theoi_mask having non-zero pixels.

Theorientation parameter specifies the estimated angle of tlgefprint in degrees (0 to
359). Theoffset (0 to 180) specifies the offset (+ or -) in degrassund this angle of
allowable variance. Taken together these valuesrimthe SDK as to fingerprint
image’s range of rotational variance which may seful to the matching algorithm. The
angle is expressed in standard mathematical fonmitht,zero degrees to the right and
angles increasing in the counterclockwise directidhus “upright” fingerprint images
are said to have an orientation of 90 degrees.efample, iforientation andoffset are
specified as 75 and 5 respectively, the fingerpmage is estimated to have an
orientation between 70 and 80 degrees. dffeet 180 will only be used in conjunction
with anorientation of 90 to convey complete uncertainty as to thgdiprint’s
orientation, and in that case full rotational vada (0 to 359) shall be assumed.

The memory foenrolled_latent is allocated prior to the call (i.e. by the apation
linked with the SDK) as a pre-zeroized 10 megahbytay.

Upon return from this functionenroll_length shall be set by the SDK to the length (in
bytes) of the enroliment data storeceimolled_latent. The memory foenroll_length is
allocated by the caller prior to calling this fuioct
Failure-to-enroll a latent shall result in a nomezeeturn code and upon return from this
function the enrollment data writtenéarolled |atent shall contain non-zero length data
defined by the SDK as representing “null enrolimdatia.” This “null enrollment data”
shall be usable in subsequent searches for thespanding latent, and result in the
output of a candidate list with all entries se@to
Note that during the call to this function the digy containing the current background
and its contents are read-only.

Parameters

latent_finger (input): Pointer to a latent fingerprint image record.

roi_mask (input): Pointer to optional image mask identifying ROI(S).

Page 7 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

orientation (input): The estimated orientation (in degrees) of the tdiagerprint.
offset (input): The range of variance (in degrees) + or -dhientation.
enrolled_latent (output): Pointer to memory block receiving the enrolimeatad

enroll_length (output): Pointer to length ofnrolled_latent in bytes.

Return Value

This function returngero on succeser a documentedon-zero error code on failure.

2.3.4 Image Search

INT32

image_search(const BYTE *enrolled_latent,
CANDIDATE_LIST *candidates,
char *error_msg);

Description

This function searches the current backgrounddlested byset background())

for zero or more candidates matching the irgoublled_latent parameter. The selection
of features on which to match is entirely at thecdition of the SDK. Note that during
the call to this function the directory containithg current background and its contents
are read-only.

When this function is called, treandidates parameter will point to a pre-initialized
CANDIDATE_LIST (see 2.1 above) wittandidates->num_entries set equal td/, the
number of background records)(multiplied by 10 (i.eM =N x 10), andcandidates-
>list pointing to a pre-allocateld length array of (pre-zeroize@ANDIDATEstructures.

During execution of this function the SDK shall nfgdhe CANDIDATE_LIST
structure such thabindidates->num_entriesis set equal to the number of candidates
found), and the firsE members of the array specified tgndidates->list contain all
candidate information. In other words, the fBstructures of typ€ ANDIDATE (see
2.1 above) pointed to lgandidates->list shall contain the original background record
file index, finger position, similarity score, apdobability (range 0 to 100) for each
candidate found by the search. For Phase | atestihg, the number of candidates
found, S, shall equal 50 (and M will always be ¢geshan 50). Additionally, the
CANDIDATEstructures ircandidates->list shall be stored in decreasing order of
similarity_score. Note that before returning from this functioe tBDK_mustset
candidates->num_entries equal to 50, even if less than 50 candidates dtalhcwritten
to candidates->list. In the event that less than 50 candidates aualbcwritten to
candidates->list, the pre-zeroized CANDIDATE structures in the gall effectively
provide “padding” (with NULL candidates) to the téed length of 50.

Thebackground_index field for eachCANDIDATEshall be set equal to the relative offset
of the original ten-print record file processeddnyoll _background() . The
finger_position for eachCANDIDATEshall be set equal to the finger position infoliomat
extracted from its associated ten-print record fidend thesimilarity score for each
CANDIDATEshall be set to a value greater than or equahtbibh represents the
similarity of the input latent finger image to trespective candidate finger image in the

Page 8 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

background. Note that any background fingerprirages not represented by an entry in
candidates->list shall be implicitly assigned a similarity scoreuabto 0.

The probability field for each CANDIDATE shall be set equal to fivebability (0-100)
that the candidate is a “likely hit.”

Non-fatal error conditions shall be tolerated ahallsnotresult in pre-mature halting (i.e.

non-completion of the search). These error camustinclude encountering “gaps” in the
background resulting from prior failure-to-enroBTE) events, and searching with an
enrolled_latent containing “null enroliment data.” In the lattease, the candidate list

returned shall have all entries set to 0. If ahthe above non-fatal error conditions are
encountered, the SDK may optionally return a doatat non-zero warning code (after
completing the search), though this is not required

DuplicateCANDIDATEentries or entries whosackground index field values are out of
range (i.e. not between 1 and the N inclusive)lstwlbe accepted.

Upon entry theerror_msg parameter will point to a pre-allocated and preized string
buffer of length 513 bytes (512 + 1 for tNeJLL terminator) that the SDK may use for
outputting detailed information regarding fatalaesr which have occurred (signaled by a
non-zero return code). This may be useful for dgimg any problems that might occur
after the SDK is received by NIST.

Optionally, the quality of the latent print, themioer of minutiae found in the latent print,
the number of latent minutiae matching each candident, and the quality of the each
candidate print may be returned (respectivelyXh@fieldscandidates->latent_quality ,
candidates->num_latent_minutiae, candidate->num_matching_minutiae, and
candidate->candidate_quality. If image quality values are supplied for eittier latent

or candidate print, the table below indicates #piired range of values and their
associated meanings:

Image Quality Value Description
20 Poor

40 Fair

60 Good

80 Very Good
100 Excellent

Note 1: Matcher architectures in which “advanced méchers” are selectively
invoked (depending upon initial screening resultsdr the latent) are allowed. The
SDK might decide to invoke (call) computationally mtensive matchers only for those
comparisons which show initial good results. Howevethe SDK must decide if the
additional features (if any) used by these “advanak matchers” will be written to
persistent storage during the call teenroll_background()

Note 2: Since it may not be possible to keep all blground images in memory, it
might be necessary for the software to repeatedlyetrieve the data from disk, and
this extra fetch time will be included in the exection time measurement.

Note 3: The candidate list shall only depend on thaputs to this function and the
currently selected background (not on any previousesults from this function).
Thus, identical inputs and background shall produceidentical candidate lists
independent of all prior calls to this function.

Parameters

Page 9 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

2.4

3

enrolled_latent (input): Pointer to the latent image’s enroliment data.
candidates (input/output): A list of candidates matching the latent fingerpimage.
error_msg (output): Pointer to a detailed error message string.

Return Value

This function returngero on succeser a documentedon-zero error code on failure.

Error Codes and Handling

The participant shall provide documentation of(athn-zero) error or warning return codes (see
section 3.3, Documentation).

The application should include error/exception Hiaugdso that in the case of a fatal error, the
return code is still provided to the calling apption.

All messages which convey errors, warnings or oth@ormation shall be suppressed.
Information supplemental to the documented erralesareturned by the SDK shall be conveyed
via theerror_msg parameter (see 2.3 above) only.

At minimum the following return codes shall be used

Return Function Explanation
code
0 Al Success
-1 extract_image_data() unable to open file
-2 extract_image_data() Incorrect file format
-3 extract_image_data() error parsing ten-print file
-4 extract_image_data() error decompressing image
-5 extract_image_data() insufficient memory error
-6 extract_image_data() unspecified error
100 enroll_background() enrollment directory not found
101 enroll_background() error extracting image(s) from ten print
102 enroll_background() error writing enroliment data
103 enroll_background() insufficient memory error

200 set_background() enrollment directory not found

300 enroll_latent() image size not supported

301 enroll_latent() image resolution not supported

302 enroll_latent() insufficient features found in latent

400 image_search() enrollment directory not set

401 image_search() insufficient memory available for search
402 image_search() unable to access original ten-print record

Software and Documentation

SDK Library and Platform Requirements

Individual SDKs shall not include multiple “modesf operation, or algorithm variations which
require explicit activation by the calling applicat. If participants wish to separately compare
the performance of such features, they must subgpidrate SDKs. Note that this requirement
does not preclude implementation of internally. @etonomously) selected modes or algorithm

Page 10 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

3.2

variations within a single SDK. Only such featureguiring external selection by the calling
application are forbidden.

Participants shall provide NIST with binary coddyofi.e. no source code) — supporting files such
as header (“.h") files notwithstanding. It is preed that the SDK be submitted in the form of a
single static library file (ie. “.LIB” for Windowsr “.a” for Linux). However, dynamic/shared
library files are permitted.

If dynamic/shared library files are submitted siforeferred that the API interface specified by thi
document be implemented in a single “core” libréitg with the base filename ‘liblatent’ (for

example, ‘liblatent.dll’ for Windows or ‘liblaterso’ for Linux). Additional dynamic/shared
library files may be submitted that support thisr&” library file (i.e. the “core” library file may

have dependencies implemented in these otheritisjar

Note that dependencies on external dynamic/shaikerhries such as compiler-specific
development environment libraries are discouragédabsolutely necessary, external libraries
must be provided to NIST upon prior approval by Tiest Liaison.

The SDK will be tested in non-interactive “batchbde (i.e. without terminal support). Thus, the
library code provided shall not use any interacfiugctions such as graphical user interface (GUI)
calls, or any other calls which require terminaleraction (e.g. calls to “standard input” or

“standard output”).

The use of multi-threading by the SDK is encouragedhe NIST test platform includes dual-
processor support. The SDK need not be “thread’ sef the NIST test driver itself is single
threaded. If multi-threading is utilized by the ISi3 shall be documented.

NIST will link the provided library file(s) to a Gnguage test driver application (developed by
NIST) using the GCC compilefaf Windows platforms Cygwin/GCC version 3.3.1 will be used;

for Linux platforms GCC version 2.96 and GNU Id 2.11.90.0.8 will be used. All GCC compilers

use Libc 6). For example,

gcc —o latenttest latenttest.c -L. —llatent

Participants are required to provide their librarya format that is linkable using GCC with the
NIST test driver, which is compiled with GCC. Albmpilation and testing will be performed on
x86 platforms running either Windows 2000 ProfesaldSP4 (or higher) or Linux (kernel 2.4.7-
10 or higher) dependent upon the operating sysegmirtements of the SDK. Thus, participants
are strongly advised to verify library-level compdity with GCC (on an equivalent platform)
prior to submitting their software to NIST to avdidkage problems later on (e.g. symbol name
and calling convention mismatches, incorrect birfdeyformats, etc.).

I nstallation and Usage

The SDK must install easily (i.e. one installat&tep with no participant interaction required) to
be tested, and shall be executable on any numbenawhines without requiring additional
machine-specific license control procedures owvatbn.

The SDK'’s usage shall be unlimiteNo usage controls or limits based on licensesg@tion
date/time, number of executions, etc. shall bereefbby the SDK.

It is requested that the SDK be installable usingpke file copy methods, and not require the use
of a separate installation program. Contact thet Teison for prior approval if an installation
program is absolutely necessary.

Page 11 of 12

Latent Fingerprint SDK Test APl Specification 7 November 2007

3.3

3.4

Documentation

Complete documentation of the SDK shall be providedd shall detail any additional
functionality or behavior beyond what is specifiedthis document. The documentation must
define all error and warning codes.

Multi-threading behavior by an SDK shall be docuteen

Speed Requirement

All times given assume the use of a 2.8GHz PentWimquivalent or faster processor. Time will
be measured as “wall clock” elapsed time.

The average time to enroll a single backgroundptémt- record shall take no more than 150
seconds (15 sec/image).

The average time to enroll a single latent imaggl $ake no more than 600 seconds.

The average time to search a single backgroungrienh+ecord shall take no more than 0.25
seconds (0.025 sec/image).

Page 12 of 12

